

CLASS 12 CHEMISTRY SYLLABUS

2022-23

GENRES LEARNING

https://www.genreslearning.in

SYLLABUS

PART-I

UNIT-1: THE SOLID STATE

- 1.1 General Characteristics of Solid State
- 1.2 Amorphous and Crystalline Solids
- 1.3 Classification of Crystalline Solids
 - 1.3.1 Molecular Solids
 - 1.3.2 Ionic Solids
 - 1.3.3 Metallic Solids
 - 1.3.4 Covalent or Network Solids
- 1.4 Crystal Lattices and Unit Cells
 - 1.4.1 Primitive and Centred Unit Cells
 - (a) Primitive Unit Cells
 - (b) Centred Unit Cells
 - (i) Body-Centred Unit Cells
 - (ii) Face-Centred Unit Cells
 - (iii) End-Centred Unit Cells
- 1.5 Number of Atoms in a Unit Cell
 - 1.5.1 Primitive Cubic Unit Cell
 - 1.5.2 Body-Centred Cubic Unit Cell
 - 1.5.3 Face-Centred Cubic Unit Cell
- 1.6 Close Packed Structures
 - (a) Close Packing in One Dimension
 - (b) Close Packing in Two Dimensions
 - (c) Close Packing in Three Dimensions
 - 1.6.1 Formula of a Compound and Number of Voids Filled
- 1.7 Packing Efficiency
 - 1.7.1 Packing Efficiency in hcp and ccp Structures
 - 1.7.2 Efficiency of Packing in Body-Centred Cubic Structures
 - 1.7.3 Packing Efficiency in Simple Cubic Lattice
- 1.8 Calculations Involving Unit Cell Dimensions
- 1.9 Imperfections in Solids
 - 1.9.1 Types of Point Defects
 - (a) Stoichiometric Defects
 - (i) Vacancy Defect
 - (ii) Interstitial Defect
 - (iii) Frenkel Defect
 - (iv) Schottky Defect
 - (b) Impurity Defects
 - (c) Non-Stoichiometric Defects

- (i) Metal Excess Defect
- (ii) Metal Deficiency Defect
- 1.10 Electrical Properties
 - 1.10.1 Conduction of Electricity in Metals
 - 1.10.2 Conduction of Electricity in Semiconductors
 - (a) Electron rich impurities
 - (b) Electron deficit impurities
- 1.11 Magnetic Properties
 - (i) Paramagnetism
 - (ii) Diamagnetism
 - (iii) Ferromagnetism
 - (iv) Antiferromagnetism
 - (v) Ferrimagnetism

UNIT-2: SOLUTIONS

- 2.1 Types of Solutions
- 2.2 Expressing Concentration of Solutions
 - (i) Mass percentage (w/w)
 - (ii) Volume percentage (V/V)
 - (iii) Mass by volume percentage (w/V)
 - (iv) Parts per million
 - (v) Mole fraction
 - (vi) Molarity
 - (vii) Molality
- 2.3 Solubility
 - 2.3.1 Solubility of a Solid in a Liquid
 - 2.3.2 Solubility of a Gas in a Liquid
- 2.4 Vapour Pressure of Liquid Solutions
 - 2.4.1 Vapour Pressure of Liquid-Liquid Solutions
 - 2.4.2 Raoult's Law as a Special Case of Henry's Law
 - 2.4.3 Vapour Pressure of Solutions of Solids in Liquids
- 2.5 Ideal and Non-Ideal Solutions
 - 2.5.1 Ideal Solutions
 - 2.5.2 Non-Ideal Solutions
- 2.6 Colligative Properties and Determination of Molar Mass
 - 2.6.1 Relative Lowering of Vapour Pressure
 - 2.6.2 Elevation of Boiling Point
 - 2.6.3 Depression of Freezing Point
 - 2.6.4 Osmosis and Osmotic Pressure
 - 2.6.5 Reverse Osmosis and Water Purification
- 2.7 Abnormal Molar Masses

UNIT-3: ELECTROCHEMISTRY

- 3.1 Electrochemical Cells
- 3.2 Galvanic Cells
 - 3.2.1 Measurement of Electrode Potential
- 3.3 Nernst Equation
 - 3.3.1 Equilibrium Constant from Nernst Equation
 - 3.3.2 Electrochemical Cell and Gibbs Energy of the Reaction
- 3.4 Conductance of Electrolytic Solutions
 - 3.4.1 Measurement of the Conductivity of Ionic Solutions
 - 3.4.2 Variation of Conductivity and Molar Conductivity with Concentration
- 3.5 Electrolytic Cells and Electrolysis
 - 3.5.1 Products of Electrolysis
- 3.6 Batteries
 - 3.6.1 Primary Batteries
 - 3.6.2 Secondary Batteries
- 3.7 Fuel Cells
- 3.8 Corrosion

UNIT-4: CHEMICAL KINETICS

- 4.1 Rate of a Chemical Reaction
- 4.2 Factors Influencing Rate of a Reaction
 - 4.2.1 Dependence of Rate on Concentration
 - 4.2.2 Rate Expression and Rate Constant
 - 4.2.3 Order of a Reaction
 - 4.2.4 Molecularity of a Reaction
- 4.3 Integrated Rate Equations
 - 4.3.1 Zero Order Reactions
 - 4.3.2 First Order Reactions
 - 4.3.3 Half-Life of a Reaction
- 4.4 Temperature Dependence of the Rate of a Reaction
 - 4.4.1 Effect of Catalyst
- 4.5 Collision Theory of Chemical Reactions

UNIT-5: SURFACE CHEMISTRY

- 5.1 Adsorption
 - 5.1.1 Distinction Between Adsorption and Absorption
 - 5.1.2 Mechanism of Adsorption
 - 5.1.3 Types of Adsorption
 - 5.1.4 Adsorption Isotherms
 - 5.1.5 Adsorption from Solution Phase
 - 5.1.6 Applications of Adsorption
- 5.2 Catalysis
 - 5.2.1 Homogeneous and Heterogeneous Catalysis
 - 5.2.2 Adsorption Theory of Heterogeneous Catalysis
 - 5.2.3 Shape-Selective Catalysis by Zeolites
 - 5.2.4 Enzyme Catalysis
 - 5.2.5 Catalysts in Industry
- 5.3 Colloids
- 5.4 Classification of Colloids
 - 5.4.1 Classification Based on Physical State of Dispersed Phase and Dispersion Medium
 - 5.4.2 Classification Based on Nature of Interaction between Dispersed Phase and Dispersion Medium
 - 5.4.3 Classification Based on Type of Particles of the Dispersed Phase, Multimolecular, Macromolecular and Associated Colloids
 - 5.4.4 Preparation of Colloids
 - 5.4.5 Purification of Colloidal Solutions
 - 5.4.6 Properties of Colloidal Solutions
- 5.5 Emulsions
- 5.6 Colloids Around Us

UNIT-6: GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS

- 6.1 Occurrence of Metals
- 6.2 Concentration of Ores
 - 6.2.1 Hydraulic Washing
 - 6.2.2 Magnetic Separation
 - 6.2.3 Froth Floatation Method
 - 6.2.4 Leaching
- 6.3 Extraction of Crude Metal from Concentrated Ore
- 6.4 Thermodynamic Principles of Metallurgy
 - 6.4.1 Applications
- 6.5 Electrochemical Principles of Metallurgy
- 6.6 Oxidation Reduction
- 6.7 Refining
- 6.8 Uses of Aluminium, Copper, Zinc and Iron

UNIT-7: THE *p*-BLOCK ELEMENTS

- 7.1 Group 15 Elements
 - 7.1.1 Occurrence
 - 7.1.2 Electronic Configuration
 - 7.1.3 Atomic and Ionic Radii
 - 7.1.4 Ionisation Enthalpy
 - 7.1.5 Electronegativity
 - 7.1.6 Physical Properties
 - 7.1.7 Chemical Properties
- 7.2 Dinitrogen
- 7.3 Ammonia
- 7.4 Oxides of Nitrogen
- 7.5 Nitric Acid
- 7.6 Phosphorus Allotropic Forms
- 7.7 Phosphine
- 7.8 Phosphorus Halides
 - 7.8.1 Phosphorus Trichloride
 - 7.8.2 Phosphorus Pentachloride
- 7.9 Oxoacids of Phosphorus
- 7.10 Group 16 Elements
 - 7.10.1 Occurrence
 - 7.10.2 Electronic Configuration
 - 7.10.3 Atomic and Ionic Radii
 - 7.10.4 Ionisation Enthalpy
 - 7.10.5 Electron Gain Enthalpy
 - 7.10.6 Electronegativity
 - 7.10.7 Physical Properties
 - 7.10.8 Chemical Properties
- 7.11 Dioxygen
- 7.12 Simple Oxides
- 7.13 Ozone
- 7.14 Sulphur Allotropic Forms
- 7.15 Sulphur Dioxide
- 7.16 Oxoacids of Sulphur
- 7.17 Sulphuric Acid
- 7.18 Group 17 Elements
 - 7.18.1 Occurrence
 - 7.18.2 Electronic Configuration
 - 7.18.3 Atomic and Ionic Radii
 - 7.18.4 Ionisation Enthalpy
 - 7.18.5 Electron Gain Enthalpy
 - 7.18.6 Electronegativity
 - 7.18.7 Physical Properties

7.18.8 Chemical Properties

- 7.19 Chlorine
- 7.20 Hydrogen Chloride
- 7.21 Oxoacids of Halogens
- 7.22 Interhalogen Compounds
- 7.23 Group 18 Elements
 - 7.23.1 Occurrence
 - 7.23.2 Electronic Configuration
 - 7.23.3 Atomic and Ionic Radii
 - 7.23.4 Ionisation Enthalpy
 - 7.23.5 Electron Gain Enthalpy
 - 7.23.6 Physical Properties
 - 7.23.7 Chemical Properties

UNIT-8: THE *d*-AND *f*-BLOCK ELEMENTS

- 8.1 Position in the Periodic Table
- 8.2 Electronic Configurations of the *d*-Block Elements
- 8.3 General Properties of the Transition Elements (*d*-Block)
 - 8.3.1 Physical Properties
 - 8.3.2 Variation in Atomic and Ionic Sizes of Transition Metals
 - 8.3.3 Ionisation Enthalpies
 - 8.3.4 Oxidation States
 - 8.3.5 Trends in the M²⁺/M Standard Electrode Potentials
 - 8.3.6 Trends in the M³⁺/M²⁺ Standard Electrode Potentials
 - 8.3.7 Trends in Stability of Higher Oxidation States
 - 8.3.8 Chemical Reactivity and E[®] Values
 - 8.3.9 Magnetic Properties
 - 8.3.10 Formation of Coloured Ions
 - 8.3.11 Formation of Complex Compounds
 - 8.3.12 Catalytic Properties
 - 8.3.13 Formation of Interstitial Compounds
 - 8.3.14 Alloy Formation
- 8.4 Some Important Compounds of Transition Elements
- 8.5 The Lanthanoids
 - 8.5.1 Electronic Configurations
 - 8.5.2 Atomic and Ionic Sizes
 - 8.5.3 Oxidation States
 - 8.5.4 General Characteristics
- 8.6 The Actinoids
 - 8.6.1 Electronic Configurations
 - 8.6.2 Ionic Sizes
 - 8.6.3 Oxidation States
 - 8.6.4 General Characteristics and and Comparison with Lanthanoids
- 8.7 Some Applications of *d* and *f*-Block Elements

UNIT-9: COORDINATION COMPOUNDS

- 9.1 Werner's Theory of Coordination Compounds
- 9.2 Definitions of Some Important Terms Pertaining to Coordination Compounds
- 9.3 Nomenclature of Coordination Compounds
 - 9.3.1 Formulas of Mononuclear Coordination Entities
 - 9.3.2 Naming of Mononuclear Coordination Compounds
- 9.4 Isomerism in Coordination Compounds
 - 9.4.1 Geometric Isomerism
 - 9.4.2 Optical Isomerism
 - 9.4.3 Linkage Isomerism
 - 9.4.4 Coordination Isomerism
 - 9.4.5 Ionisation Isomerism
 - 9.4.6 Solvate Isomerism
- 9.5 Bonding in Coordination Compounds
 - 9.5.1 Valence Bond Theory
 - 9.5.2 Magnetic Properties of Coordination Compounds
 - 9.5.3 Limitations of Valence Bond Theory
 - 9.5.4 Crystal Field Theory
 - 9.5.5 Colour in Coordination Compounds
 - 9.5.6 Limitations of Crystal Field Theory
- 9.6 Bonding in Metal Carbonyls
- 9.7 Importance and Applications of Coordination Compounds

PART-II

UNIT-10: HALOALKANES AND HALOARENES

- 10.1 Classification
 - 10.1.1 On the Basis of Number of Halogen Atoms
 - 10.1.2 Compounds Containing sp³ C—X Bond (X= F, Cl, Br, I)
 - 10.1.3 Compounds Containing sp² C—X Bond
- 10.2 Nomenclature
- 10.3 Nature of C-X Bond
- 10.4 Methods of Preparation of Haloalkanes
 - 10.4.1 From Alcohols
 - 10.4.2 From Hydrocarbons
 - 10.4.3 Halogen Exchange
- 10.5 Preparation of Haloarenes
- 10.6 Physical Properties
- 10.7 Chemical Reactions
 - 10.7.1 Reactions of Haloalkanes
 - 10.7.2 Reactions of Haloarenes
- 10.8 Polyhalogen Compounds
 - 10.8.1 Dichloromethane (Methylene Chloride)
 - 10.8.2 Trichloromethane (Chloroform)
 - 10.8.3 Triiodomethane (Iodoform)
 - 10.8.4 Tetrachloromethane (Carbon Tetrachloride)
 - 10.8.5 Freons
 - 10.8.6 p,p'-Dichlorodiphenyltrichloroethane(DDT)

UNIT-11: ALCOHOLS, PHENOLS AND ETHERS

- 11.1 Classification
 - 11.1.1 Alcohols—Mono, Di, Tri or Polyhydric Alcohols
 - 11.1.2 Phenols—Mono, Di and Trihydric Phenols
 - 11.1.3 Ethers
- 11.2 Nomenclature
- 11.3 Structures of Functional Groups
- 11.4 Alcohols and Phenols
 - 11.4.1 Preparation of Alcohols
 - 11.4.2 Preparation of Phenols
 - 11.4.3 Physical Properties
 - 11.4.4 Chemical Reactions
- 11.5 Some Commercially Important Alcohols
- 11.6 Ethers
 - 11.6.1 Preparation of Ethers
 - 11.6.2 Physical Properties
 - 11.6.3 Chemical Reactions

UNIT-12: ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

- 12.1 Nomenclature and Structure of Carbonyl Group
 - 12.1.1 Nomenclature
 - 12.1.2 Structure of the Carbonyl Group
- 12.2 Preparation of Aldehydes and Ketones
 - 12.2.1 Preparation of Aldehydes and Ketones
 - 12.2.2 Preparation of Aldehydes
 - 12.2.3 Preparation of Ketones
- 12.3 Physical Properties
- 12.4 Chemical Reactions
- 12.5 Uses of Aldehydes and Ketones
- 12.6 Nomenclature and Structure of Carboxyl Group
 - 12.6.1 Nomenclature
 - 12.6.2 Structure of the Carbonyl Group
- 12.7 Methods of Preparation of Carboxylic Acids
- 12.8 Physical Properties
- 12.9 Chemical Reactions
 - 12.9.1 Reactions Involving Cleavage of O-H Bond
 - 12.9.2 Reactions Involving Cleavage of C-OH Bond
 - 12.9.3 Reactions Involving –COOH Group
 - 12.9.4 Substitution Reactions in the Hydrocarbon Part
- 12.10 Uses of Carboxylic Acids

UNIT-13: AMINES

I Amines

- 13.1 Structure of Amines
- 13.2 Classification
- 13.3 Nomenclature
- 13.4 Preparation of Amines
- 13.5 Physical Properties
- 13.6 Chemical Reactions

II Diazonium salts

- 13.7 Method of Preparation of Diazonium Salts
- 13.8 Physical Properties
- 13.9 Chemical Reactions
- 13.10 Importance of Diazonium Salts in Synthesis of Aromatic Compounds

UNIT-14: BIOMOLECULES

- 14.1 Carbohydrates
 - 14.1.1 Classification of Carbohydrates
 - 14.1.2 Monosaccharides
 - 14.1.2.1 Glucose
 - 14.1.2.2 Fructose
 - 14.1.3 Disaccharides
 - 14.1.4 Polysaccharides
 - 14.1.5 Importance of Carbohydrates
- 14.2 Proteins
 - 14.2.1 Amino Acids
 - 14.2.2 Classification of Amino Acids
 - 14.2.3 Structure of Proteins
 - 14.2.4 Denaturation of Proteins
- 14.3 Enzymes
 - 14.3.1 Mechanism of Enzyme Action
- 14.4 Vitamins
 - 14.4.1 Classification of Vitamins
- 14.5 Nucleic Acids
 - 14.5.1 Chemical Composition of Nucleic Acids
 - 14.5.2 Structure of Nucleic Acids
 - 14.5.3 Biological Functions of Nucleic Acids
- 14.6 Hormones

UNIT:15: POLYMERS

- 15.1 Classification of Polymers
- 15.2 Types of Polymerisation Reactions
 - 15.2.1 Addition Polymerisation or Chain Growth Polymerisation
 - 15.2.1.1 Mechanism of Addition Polymerisation
 - 15.2.1.2 Some Important Addition Polymers
 - 15.2.2 Condensation Polymerisation or Step Growth Polymerisation 15.2.2.1 Some Important Condensation Polymers
 - 15.2.3 Copolymerisation
 - 15.2.4 Rubber
- 15.3 Molecular Mass of Polymers
- 15.4 Biodegradable Polymers
- 15.5 Polymers of Commercial Importance

UNIT-16: CHEMISTRY IN EVERYDAY LIFE

- 16.1 Drugs and their Classification
 - 16.1.1 Classification of Drugs
- 16.2 Drug-Target Interaction
 - 16.2.1 Enzymes as Drug Targets
 - 16.2.2 Receptors as Drug Targets
- 16.3 Therapeutic Action of Different Classes of Drugs
 - 16.3.1 Antacids
 - 16.3.2 Antihistamines
 - 16.3.3 Neurologically Active Drugs
 - 16.3.4 Antimicrobials
 - 16.3.5 Antifertility Drugs
- 16.4 Chemicals in Food
 - 16.4.1 Artificial Sweetening Agents
 - 16.4.2 Food Preservatives
 - 16.4.3 Antioxidants in Food
- 16.5 Cleansing Agents
 - 16.5.1 Soaps
 - 16.5.2 Synthetic Detergents

GENRES LEARNING

Website: https://genreslearning.in

Email at: info@genreslearning.in
