

CLASS 11 CHEMISTRY SYLLABUS

2022-23

GENRES LEARNING

https://www.genreslearning.in

SYLLABUS

PART-I

UNIT-1: SOME BASIC CONCEPTS OF CHEMISTRY

- 1.1. Importance of Chemistry
- 1.2. Nature of Matter
 - 1.2.1. States of Matter
 - 1.2.2. Classification of Matter
- 1.3. Properties of Matter and Their Measurement
 - 1.3.1. Physical and chemical properties
 - 1.3.2. Measurement of physical properties
 - 1.3.3. The International System of Units (SI)
 - 1.3.4. Mass and Weight
 - 1.3.5. Volume
 - 1.3.6. Density
 - 1.3.7. Temperature
- 1.4. Uncertainty in Measurement
 - 1.4.1. Scientific Notation
 - 1.4.2. Significant Figures
 - 1.4.3. Dimensional Analysis
- 1.5. Laws of Chemical Combinations
 - 1.5.1. Law of Conservation of Mass
 - 1.5.2. Law of Definite Proportions
 - 1.5.3. Law of Multiple Proportions
 - 1.5.4. Gay Lussac's Law of Gaseous Volumes
 - 1.5.5. Avogadro's Law
- 1.6. Dalton's Atomic Theory
- 1.7. Atomic and Molecular Masses
 - 1.7.1. Atomic Mass
 - 1.7.2. Average Atomic Mass
 - 1.7.3. Molecular Mass
 - 1.7.4. Formula Mass
- 1.8. Mole Concept and Molar Masses
- 1.9. Percentage Composition
 - 1.9.1. Empirical Formula for Molecular Formula
- 1.10. Stoichiometry and Stoichiometric Calculations
 - 1.10.1. Limiting Reagent
 - 1.10.2. Reactions in Solutions
 - 1. Mass per cent
 - 2. Mole Fraction
 - 3. Molarity
 - 4. Molality

UNIT-2: STRUCTURE OF ATOM

- 2.1. Discovery of Sub-Atomic Particles
 - 2.1.1. Discovery of Electron
 - 2.1.2. Charge to Mass Ratio of Electron
 - 2.1.3. Charge on the Electron
 - 2.1.4. Discovery of Protons and Neutrons
- 2.2. Atomic Models
 - 2.2.1. Thomson Model of Atom
 - 2.2.2. Rutherford's Nuclear Model of Atom
 - 2.2.3. Atomic Number and Mass Number
 - 2.2.4. Isobars and Isotopes
 - 2.2.5. Drawbacks of Rutherford Model
- 2.3. Developments Leading to The Bohr's Model of Atom
 - 2.3.1. Wave Nature of Electromagnetic Radiation
 - 2.3.2. Particle Nature of Electromagnetic Radiation: Planck's Quantum Theory
 - Photoelectric Effect
 - Dual Behaviour of Electromagnetic Radiation
 - 2.3.3. Evidence for the quantized* Electronic Energy Levels: Atomic spectra
 - Emission and Absorption Spectra
 - Line Spectrum of Hydrogen
- 2.4. Bohr's Model for Hydrogen Atom
 - 2.4.1. Explanation of Line Spectrum of Hydrogen
 - 2.4.2. Limitations of Bohr's Model
- 2.5. Towards Quantum Mechanical Model of The Atom
 - 2.5.1. Dual Behaviour of Matter
 - 2.5.2. Heisenberg's Uncertainty Principle
 - Significance of Uncertainty Principle
 - Reasons for the Failure of the Bohr Model
- 2.6. Quantum Mechanical Model of Atom
 - 2.6.1. Orbitals and Quantum Numbers
 - 2.6.2. Shapes of Atomic Orbitals
 - 2.6.3. Energies of Orbitals
 - 2.6.4. Filling of Orbitals in Atom
 - Aufbau Principle
 - Pauli Exclusion Principle
 - Hund's Rule of Maximum Multiplicity
 - 2.6.5. Electronic Configuration of Atoms
 - 2.6.6. Stability of Completely Filled and Half-Filled Subshells

UNIT-3: CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES

- 3.1. Why Do We Need to Classify Elements?
- 3.2. Genesis of Periodic Classification
- 3.3. Modern Periodic Law and The Present Form of The Periodic Table
- 3.4. Nomenclature of Elements with Atomic Numbers > 100
- 3.5. Electronic Configurations of Elements and The Periodic Table
 - (a) Electronic Configurations in Periods
 - (b) Group-Wise Electronic Configurations
- 3.6. Electronic Configurations and Types of Elements: s-, p-, d-, f- Blocks
 - 3.6.1. The s-Block Elements
 - 3.6.2. The p-Block Elements
 - 3.6.3. The d-Block Elements (Transition Elements)
 - 3.6.4. The f-Block Elements (Inner-Transition Elements)
 - 3.6.5. Metals, Non-metals and Metalloids
- 3.7. Periodic Trends in Properties of Elements
 - 3.7.1. Trends in Physical Properties
 - (a) Atomic Radius
 - (b) Ionic Radius
 - (c) Ionization Enthalpy
 - (d) Electron Gain Enthalpy
 - (e) Electronegativity
 - 3.7.2. Periodic Trends in Chemical
 - (a) Periodicity of Valence or Oxidation States
 - (b) Anomalous Properties of Second Period Elements
 - 3.7.3. Periodic Trends and Chemical Reactivity

UNIT-4: CHEMICAL BONDING AND MOLECULAR STRUCTURE

- 4.1. Kössel-Lewis Approach to Chemical Bonding
 - 4.1.1. Octet Rule
 - 4.1.2. Covalent Bond
 - 4.1.3. Lewis Representation of Simple Molecules (the Lewis Structures)
 - 4.1.4. Formal Charge
 - 4.1.5. Limitations of the Octet Rule
- 4.2. Ionic or Electrovalent Bond
 - 4.2.1. Lattice Enthalpy
- 4.3. Bond Parameters
 - 4.3.1. Bond Length
 - 4.3.2. Bond Angle
 - 4.3.3. Bond Enthalpy
 - 4.3.4. Bond Order
 - 4.3.5. Resonance Structures
 - 4.3.6. Polarity of Bonds
- 4.4. The Valence Shell Electron Pair Repulsion (VSEPR) Theory
- 4.5. Valence Bond Theory
 - 4.5.1. Orbital Overlap Concept
 - 4.5.2. Directional Properties of Bonds
 - 4.5.3. Overlapping of Atomic Orbitals
 - 4.5.4. Types of Overlapping and Nature of Covalent Bonds
 - (i) Sigma(σ) bond
 - s-s overlapping
 - s-p overlapping
 - p–p overlapping
 - (ii) $pi(\pi)$ bond
 - 4.5.5. Strength of Sigma and pi Bonds
- 4.6. Hybridisation
 - 4.6.1. Types of Hybridisation
 - (i) sp hybridisation
 - (ii) sp² hybridisation
 - (iii) sp³ hybridisation
 - 4.6.2. Other Examples of sp³, sp² and sp Hybridisation
 - sp³ Hybridisation in C₂H₆ molecule
 - sp² Hybridisation in C₂H₄
 - sp Hybridisation in C₂H₂

- 4.6.3. Hybridisation of Elements involving d Orbitals
 - (i) Formation of PCl₅ (sp₃d hybridisation)
 - (ii) Formation of SF₆ (sp₃d₂ hybridisation)
- 4.7. Molecular Orbital Theory
 - 4.7.1. Formation of Molecular Orbitals Linear Combination of Atomic Orbitals (LCAO)
 - 4.7.2. Conditions for the Combination of Atomic Orbitals
 - 4.7.3. Types of Molecular Orbitals
 - 4.7.4. Energy Level Diagram for Molecular Orbitals
 - 4.7.5. Electronic Configuration and Molecular Behaviour
 - Stability of Molecules
 - Bond order
 - Nature of the bond
 - Bond-length
 - Magnetic nature
- 4.8. Bonding in Some Homonuclear Diatomic Molecules
 - (1) Hydrogen molecule (H₂)
 - (2) Helium molecule (He₂)
 - (3) Lithium molecule (Li₂)
 - (4) Carbon molecule (C₂)
 - (5) Oxygen molecule (O₂)
- 4.9. Hydrogen Bonding
 - 4.9.1. Cause of Formation of Hydrogen Bond
 - 4.9.2. Types of H-Bonds
 - Intermolecular hydrogen bond
 - Intramolecular hydrogen bond

UNIT-5: STATES OF MATTER

- 5.1. Intermolecular Forces
 - 5.1.1. Dispersion Forces or London Forces
 - 5.1.2. Dipole Dipole Forces
 - 5.1.3. Dipole–Induced Dipole Forces
- 5.2. Thermal Energy
- 5.3. Intermolecular Forces v/s Thermal Interactions
- 5.4. The Gaseous State
- 5.5. The Gas Laws
 - 5.5.1. Boyle's Law (Pressure Volume Relationship)
 - 5.5.2. Charles' Law (Temperature Volume Relationship)
 - 5.5.3. Gay Lussac's Law (Pressure-Temperature Relationship)
 - 5.5.4. Avogadro Law (Volume Amount Relationship)
- 5.6. Ideal Gas Equation
 - 5.6.1. Density and Molar Mass of a Gaseous Substance
 - 5.6.2. Dalton's Law of Partial Pressures
- 5.7. Kinetic Energy and Molecular Speeds
- 5.8. Kinetic Molecular Theory of Gases
- 5.9. Behaviour of Real Gases: Deviation from Ideal Gas Behaviour
- 5.10. Liquefaction of Gases
- 5.11. Liquid State
 - 5.11.1. Vapour Pressure
 - 5.11.2. Surface Tension
 - 5.11.3. Viscosity

UNIT-6: THERMODYNAMICS

- 6.1. Thermodynamic Terms
 - 6.1.1. The System and the Surroundings
 - 6.1.2. Types of the System
 - 1. Open System
 - 2. Closed System
 - 3. Isolated System
 - 6.1.3. The State of the System.
 - 6.1.4. The Internal Energy as a State Function
 - (a) Work
 - (b) Heat
 - (c) The General Case
- 6.2. Applications
 - 6.2.1 Work
 - 6.2.2 Enthalpy, H
 - (a) A Useful New State Function
 - (b) Extensive and Intensive Properties
 - (c) Heat Capacity
 - (d) The Relationship between C_p and C_V for an Ideal Gas
- 6.3. Measurement of ΔU and ΔH : Calorimetry
 - (a) ΔU Measurements
 - (b) ΔH Measurements
- 6.4. Enthalpy Change, $\Delta_r H$ of a Reaction Reaction Enthalpy
 - (a) Standard Enthalpy of Reactions
 - (b) Enthalpy Changes during Phase Transformations
 - (c) Standard Enthalpy of Formation
 - (d) Thermochemical Equations
 - (e) Hess's Law of Constant Heat Summation
- 6.5. Enthalpies for Different Types of Reactions
 - (a) Standard Enthalpy of Combustion (symbol: $\Delta_c H^{\Theta}$)
 - (b) Enthalpy of Atomization (symbol: $\Delta_{\alpha}H^{\Theta}$)
 - (c) Bond Enthalpy (symbol: $\Delta_{bond}H^{\Theta}$)
 - (d) Lattice Enthalpy
 - (e) Enthalpy of Solution (symbol: $\Delta_{sol}H^{\Theta}$)
 - (f) Enthalpy of Dilution
- 6.6. Spontaneity
 - (a) Is Decrease in Enthalpy a Criterion for Spontaneity?
 - (b) Entropy and Spontaneity
 - (c) Gibbs Energy and Spontaneity
 - (d) Entropy and Second Law of Thermodynamics
 - (e) Absolute Entropy and Third Law of Thermodynamics
- 6.7. Gibbs Energy Change and Equilibrium

UNIT-7: EQUILIBRIUM

- 7.1. Equilibrium in Physical Processes
 - 7.1.1 Solid-Liquid Equilibrium
 - 7.1.2 Liquid-Vapour Equilibrium
 - 7.1.3 Solid Vapour Equilibrium
 - 7.1.4 Equilibrium Involving Dissolution of Solid or Gases in Liquids
 - Solids in liquids
 - Gases in liquids
 - 7.1.5 General Characteristics of Equilibria Involving Physical Processes
- 7.2. Equilibrium in Chemical Processes Dynamic Equilibrium
- 7.3. Law of Chemical Equilibrium and Equilibrium Constant
- 7.4. Homogeneous Equilibria
 - 7.4.1 Equilibrium Constant in Gaseous Systems
- 7.5. Heterogeneous Equilibria
- 7.6. Applications of Equilibrium Constants
 - 7.6.1 Predicting the Extent of a Reaction
 - 7.6.2 Predicting the Direction of the Reaction
 - 7.6.3 Calculating Equilibrium Concentrations
- 7.7. Relationship between Equilibrium Constant K, Reaction Quotient Q and Gibbs Energy G
- 7.8. Factors Affecting Equilibria
 - 7.8.1 Effect of Concentration Change
 - Effect of Concentration An experiment
 - 7.8.2 Effect of Pressure Change
 - 7.8.3 Effect of Inert Gas Addition
 - 7.8.4 Effect of Temperature Change
 - Effect of Temperature An experiment
 - 7.8.5 Effect of a Catalyst
- 7.9. Ionic Equilibrium in Solution
- 7.10. Acids, Bases and Salts
 - 7.10.1 Arrhenius Concept of Acids and Bases
 - 7.10.2 The Brönsted-Lowry Acids and Bases
 - 7.10.3 Lewis Acids and Bases
- 7.11. Ionization of Acids and Bases
 - 7.11.1 The Ionization Constant of Water and its Ionic Product
 - 7.11.2 The pH Scale

- 7.11.3 Ionization Constants of Weak Acids
- 7.11.4 Ionization of Weak Bases
- 7.11.5 Relation between Ka and Kb
- 7.11.6 Di- and Polybasic Acids and Di- and Polyacidic Bases
- 7.11.7 Factors Affecting Acid Strength
- 7.11.8 Common Ion Effect in the Ionization of Acids and Bases
- 7.11.9 Hydrolysis of Salts and the pH of their Solutions
- 7.12. Buffer Solutions
 - 7.12.1 Designing Buffer Solution
 - Preparation of Acidic Buffer
- 7.13. Solubility Equilibria of Sparingly Soluble Salts
 - 7.13.1 Solubility Product Constant
 - 7.13.2 Common Ion Effect on Solubility of Ionic Salts

PART-II

UNIT-8: REDOX REACTIONS

- 8.1 Classical Idea of Redox Reactions-Oxidation and Reduction Reactions
- 8.2 Redox Reactions in Terms of Electron Transfer Reactions
 - 8.2.1 Competitive Electron Transfer Reactions
- 8.3 Oxidation Number
 - 8.3.1 Types of Redox Reactions
 - 1 Combination reactions
 - 2 Decomposition reactions
 - 3 Displacement reactions
 - (a) Metal displacement
 - (b) Non-metal displacement
 - 4 Disproportionation reactions
 - 8.3.2 Balancing of Redox Reactions
 - (a) Oxidation Number Method
 - (b) Half Reaction Method
 - 8.3.3 Redox Reactions as the Basis for Titrations
 - 8.3.4 Limitations of Concept of Oxidation Number
- 8.4 Redox Reactions and Electrode Processes

UNIT-9: HYDROGEN

- 9.1 Position of Hydrogen in the Periodic Table
- 9.2 Dihydrogen, H₂
 - 9.2.1 Occurrence
 - 9.2.2 Isotopes of Hydrogen
- 9.3 Preparation of Dihydrogen, H₂
 - 9.3.1 Laboratory Preparation of Dihydrogen
 - 9.3.2 Commercial Production of Dihydrogen
- 9.4 Properties of Dihydrogen
 - 9.4.1 Physical Properties
 - 9.4.2 Chemical Properties
 - 9.4.3 Uses of Dihydrogen
- 9.5 Hydrides
 - 9.5.1 Ionic or Saline Hydrides
 - 9.5.2 Covalent or Molecular Hydride
 - 9.5.3 Metallic or Non-stoichiometric (or Interstitial) Hydrides
- 9.6 Water
 - 9.6.1 Physical Properties of Water
 - 9.6.2 Structure of Water
 - 9.6.3 Structure of Ice
 - 9.6.4 Chemical Properties of Water
 - (1) Amphoteric Nature:
 - (2) Redox Reactions Involving Water
 - (3) Hydrolysis Reaction
 - (4) Hydrates Formation
 - 9.6.5 Hard and Soft Water
 - 9.6.6 Temporary Hardness
 - 9.6.7 Permanent Hardness
- 9.7 Hydrogen Peroxide (H₂O₂)
 - 9.7.1 Preparation
 - 9.7.2 Physical Properties
 - 9.7.3 Structure
 - 9.7.4 Chemical Properties
 - 9.7.5 Storage
 - 9.7.6 Uses
- 9.8 Heavy Water, D₂O
- 9.9 Dihydrogen as a Fuel

UNIT-10: THE s-BLOCK ELEMENTS

- 10.1 Group 1 Elements: Alkali Metals
 - 10.1.1 Electronic Configuration
 - 10.1.2 Atomic and Ionic Radii
 - 10.1.3 Ionization Enthalpy
 - 10.1.4 Hydration Enthalpy
 - 10.1.5 Physical Properties
 - 10.1.6 Chemical Properties
 - 10.1.7 Uses
- 10.2 General Characteristics of the Compounds of the Alkali Metals
 - 10.2.1 Oxides and Hydroxides
 - 10.2.2 Halides
 - 10.2.3 Salts of Oxo-Acids
- 10.3 Anomalous Properties of Lithium
 - 10.3.1 Points of Difference between Lithium and other Alkali Metals
 - 10.3.2 Points of Similarities between Lithium and Magnesium
- 10.4 Some Important Compounds of Sodium
 - Sodium Carbonate (Washing Soda), Na₂CO₃·10H₂O
 - Sodium Chloride, NaCl
 - Sodium Hydroxide (Caustic Soda), NaOH
 - Sodium Hydrogen Carbonate (Baking Soda), NaHCO₃
- 10.5 Biological Importance of Sodium and Potassium
- 10.6 Group 2 Elements: Alkaline Earth Metals
 - 10.6.1 Electronic Configuration
 - 10.6.2 Atomic and Ionic Radii
 - 10.6.3 Ionization Enthalpies
 - 10.6.4 Hydration Enthalpies
 - 10.6.5 Physical Properties
 - 10.6.6 Chemical Properties
 - 10.6.7 Uses
- 10.7 General Characteristics of Compounds of the Alkaline Earth Metals
- 10.8 Anomalous Behaviour of Beryllium
 - 10.8.1 Diagonal Relationship between Beryllium and Aluminium
- 10.9 Some Important Compounds of Calcium
 - Calcium Oxide or Quick Lime, CaO
 - Calcium Hydroxide (Slaked lime), Ca(OH)₂
 - Calcium Carbonate, CaCO₃
 - Calcium Sulphate (Plaster of Paris), CaSO₄·½ H₂O
- 10.10 Biological Importance of Magnesium and Calcium

UNIT-11: THE *p*-BLOCK ELEMENTS

- 11.1 Group 13 Elements: The Boron Family
 - 11.1.1 Electronic Configuration
 - 11.1.2 Atomic Radii
 - 11.1.3 Ionization Enthalpy
 - 11.1.4 Electronegativity
 - 11.1.5 Physical Properties
 - 11.1.6 Chemical Properties
 - Oxidation state and trends in chemical reactivity
 - (i) Reactivity Towards Air
 - (ii) Reactivity Towards Acids and Alkalies
 - (iii) Reactivity Towards Halogens
- 11.2 Important Trends and Anomalous Properties of Boron
- 11.3 Some Important Compounds of Boron
 - 11.3.1 Borax
 - 11.3.2 Orthoboric acid
 - 11.3.3 Diborane, B₂H₆
- 11.4 Uses of Boron and Aluminium and their Compounds
- 11.5 Group 14 Elements: The Carbon Family
 - 11.7.1 Electronic Configuration
 - 11.7.2 Covalent Radius
 - 11.7.3 Ionization Enthalpy
 - 11.7.4 Electronegativity
 - 11.7.5 Physical Properties
 - 11.7.6 Chemical Properties
 - Oxidation states and trends in chemical reactivity
 - (i) Reactivity towards oxygen
 - (ii) Reactivity towards water
 - (iii) Reactivity towards halogen
- 11.6 Important Trends and Anomalous Behaviour of Carbon
- 11.7 Allotropes of Carbon
 - 11.7.1 Diamond
 - 11.7.2 Graphite
 - 11.7.3 Fullerenes
 - 11.7.4 Uses of Carbon
- 11.8 Some Important Compounds of Carbon and Silicon
 - 11.8.1 Carbon Monoxide
 - 11.8.2 Carbon Dioxide
 - 11.8.3 Silicon Dioxide, SiO₂
 - 11.8.4 Silicones
 - 11.8.5 Silicates
 - 11.8.6 Zeolites

UNIT-12: ORGANIC CHEMISTRY – SOME BASIC PRINCIPLES AND TECHNIQUES

- 12.1 General Introduction
- 12.2 Tetravalence of Carbon: Shapes of Organic Compounds
 - 12.2.1 The Shapes of Carbon Compounds
 - 12.2.2 Some Characteristic Features of p-Bonds
- 12.3 Structural Representations of Organic Compounds
 - 12.3.1 Complete, Condensed and Bond-Line Structural Formulas
 - 12.3.2 Three-Dimensional Representation of Organic Molecules
- 12.4 Classification of Organic Compounds
 - I Acyclic or Open Chain Compounds
 - II Cyclic or Closed Chain or Ring Compounds
 - (a) Alicyclic Compounds
 - (b) Aromatic Compounds
 - Benzenoid Aromatic Compounds
 - Non-Benzenoid Compound
 - 12.4.1 Functional Group
 - 12.4.2 Homologous Series
- 12.5 Nomenclature of Organic Compounds
 - 12.5.1 The IUPAC System of Nomenclature
 - 12.5.2 IUPAC Nomenclature of Alkanes
 - 12.5.3 Nomenclature of Organic Compounds having Functional Group(s)
 - 12.5.4 Nomenclature of Substituted Benzene Compounds
- 12.6 Isomerism
 - 12.6.1 Structural Isomerism
 - (i) Chain Isomerism
 - (ii) Position Isomerism
 - (iii) Functional Group Isomerism
 - (iv) Metamerism
 - 12.6.2 Stereoisomerism
- 12.7 Fundamental Concepts in Organic Reaction Mechanism
 - 12.7.1 Fission of a Covalent Bond
 - 12.7.2 Substrate and Reagent
 - 12.7.3 Electron Movement in Organic Reactions
 - 12.7.4 Electron Displacement Effects in Covalent Bonds
 - 12.7.5 Inductive Effect
 - 12.7.6 Resonance Structure
 - 12.7.7 Resonance Effect
 - (i) Positive Resonance Effect (+R effect)
 - (ii) Negative Resonance Effect (- R effect)
 - 12.7.8 Electromeric Effect (E effect)
 - 12.7.9 Hyperconjugation
 - 12.7.10Types of Organic Reactions and Mechanisms

- 12.8 Methods of Purification of Organic Compounds
 - 12.8.1 Sublimation
 - 12.8.2 Crystallisation
 - 12.8.3 Distillation
 - 12.8.4 Differential Extraction
 - 12.8.5 Chromatography
- 12.9 Qualitative Analysis of Organic Compounds
 - 12.9.1 Detection of Carbon and Hydrogen
 - 12.9.2 Detection of Other Elements
 - (A) Test for Nitrogen
 - (B) Test for Sulphur
 - (C) Test for Halogens
 - (D) Test for Phosphorus
- 12.10 Quantitative Analysis
 - 12.10.1 Carbon and Hydrogen
 - 12.10.2 Nitrogen
 - (i) Dumas method:
 - (ii) Kjeldahl's method
 - 12.10.3 Halogens
 - 12.10.4 Sulphur
 - 12.10.5 Phosphorus
 - 12.10.6 Oxygen

UNIT-13: HYDROCARBONS

- 13.1 Classification
- 13.2 Alkanes
 - 13.2.1 Nomenclature and Isomerism
 - 13.2.2 Preparation
 - 1 From unsaturated hydrocarbons
 - 2 From alkyl halides
 - 3 From carboxylic acids
 - 13.2.3 Properties
 - Physical properties
 - Chemical properties
 - 1 Substitution reactions
 - Halogenation
 - Mechanism
 - 2 Combustion
 - 3 Controlled oxidation
 - 4 Isomerisation
 - 5 Aromatization

- 6 Reaction with steam
- 7 Pyrolysis
- 13.2.4 Conformations
 - 1 Sawhorse projections
 - 2 Newman projections
- 13.3 Alkenes
 - 13.3.1 Structure of Double Bond
 - 13.3.2 Nomenclature
 - 13.3.3 Isomerism
 - 13.3.4 Preparation
 - 13.3.5 Properties
 - Physical properties
 - Chemical properties
 - Addition reaction of HBr to symmetrical alkenes
 - Addition reaction of HBr to unsymmetrical alkenes (Markovnikov Rule)
 - Mechanism
 - Anti Markovnikov addition or peroxide effect or Kharash effect
- 13.4 Alkynes
 - 13.4.1 Nomenclature and Isomerism
 - 13.4.2 Structure of Triple Bond
 - 13.4.3 Preparation
 - 13.4.4 Properties
 - Physical properties
 - Chemical properties
- 13.5 Aromatic Hydrocarbon
 - 13.5.1 Nomenclature and Isomerism
 - 13.5.2 Structure of Benzene
 - Resonance and stability of benzene
 - 13.5.3 Aromaticity
 - 13.5.4 Preparation of Benzene
 - 13.5.5 Properties
 - Physical properties
 - Chemical properties
 - Electrophilic substitution reactions
 - Mechanism of electrophilic substitution reactions
 - Addition reactions
 - 13.5.6 Directive influence of a functional group in monosubstituted benzene
- 13.6 Carcinogenicity and Toxicity

UNIT-14: ENVIRONMENTAL CHEMISTRY

- 14.1 Environmental Pollution
- 14.2 Atmospheric Pollution
 - 14.2.1 Tropospheric Pollution
 - Gaseous air pollutants
 - (a) Oxides of Sulphur
 - (b) Oxides of Nitrogen
 - (c) Hydrocarbon
 - (d) Oxides of Carbon
 - (i) Carbon monoxide
 - (ii) Carbon dioxide
 - Global Warming and Greenhouse Effect
 - Acid rain
 - 2 Particulate Pollutants
 - Smog
 - Formation of photochemical smog
 - Effects of photochemical smog
 - How can photochemical smog be controlled?
 - 14.2.2 Stratospheric Pollution
 - Formation and Breakdown of Ozone
 - The Ozone Hole
 - Effects of Depletion of the Ozone Layer
- 14.3 Water Pollution
 - 14.3.1 Causes of Water Pollution
 - 14.3.2 International Standards for Drinking Water
- 14.4 Soil Pollution
 - 14.4.1 Pesticides
- 14.5 Industrial Waste
- 14.6 Strategies to control Environmental Pollution
 - 14.6.1 Waste Management
 - Collection and Disposal
- 14.7 Green Chemistry
 - 14.7.1 Introduction
 - 14.7.2 Green Chemistry in day-to-day Life
 - (i) Dry Cleaning of Clothes
 - (ii) Bleaching of Paper
 - (iii) Synthesis of Chemicals
 - (iv) Green Solution' to Clean Turbid Water

GENRES LEARNING

Website: https://genreslearning.in

Email at: info@genreslearning.in

-